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Two-Dimensional Dilute Ising Models: Critical
Behavior near Defect Lines
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We consider two-dimensional Ising models with randomly distributed ferro-
magnetic bonds and study the local critical behavior at defect lines by extensive
Monte Carlo simulations. Both for ladder- and chain-type defects, nonuniversal
critical behavior is observed: the critical exponent of the defect magnetization is
found to be a continuous function of the strength of the defect coupling. Analyzing
corresponding stability conditions, we obtain new evidence that the critical
exponent & of the bulk correlation length of the random Ising model does not
depend on dilution, i.e., &=1.
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1. INTRODUCTION

The presence of quenched randomness may drastically change the critical
properties of magnetic systems. For disorder which is coupled to the energy
density, i.e., in particular for random bond and random site dilution, the
relevance-irrelevance of the perturbation at a second-order phase transition
point is given by the well known Harris criterion.(1) If the specific heat
exponent of the pure system is positive, :>0, a new random fixed point is
expected to control the critical properties of the dilute model. The marginal
situation in the Harris criterion, :=0, is represented by the two-dimen-
sional (2d) Ising model, in which case detailed studies, both (field-)
theoretical(2, 3) and numerical(4�6) have been performed to clarify the critical
properties of the dilute model. By now, according to general view, the dilu-
tion is considered as a marginally irrelevant perturbation, thus the critical
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singularities in the dilute Ising model are characterized by the power laws
of the perfect model modified by logarithmic corrections. There is, how-
ever, another view which interprets numerical data as giving evidence for
dilution dependent critical exponents.(7)

In this paper we try to decide between the conflicting views in an
indirect way by studying the local critical behavior at a defect line(8) in the
dilute model. A defect line, which could be located at grain boundaries in
real systems, represents a marginal perturbation in the 2d perfect Ising
model. According to Bariev's exact solution(9) the critical exponent ;d ,
defined via the temperature dependence of the defect or local magnetiza-
tion md ,

mdtt;d, t=(Tc&T )�Tc � 0+ (1)

is a continuous function of the strength of the defect coupling Jd . For a
chain defect, see Fig. 1b, one gets

;d=
2
?2 arc tan2 }c , }c=exp[&2(Jd&J )�Tc] (2)

whereas for a ladder defect, see Fig. 1a, ;d is given by

;d=
2
?2 arc tan2 }l , }l=

tanh(J�Tc)
tanh(Jd �Tc)

(3)

where J is the coupling in the isotropic Ising model. We note that the
above formulae could be generalized to non-isotropic models, as well.(9) As

Fig. 1. Ladder (a) and chain (b) type defects.
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shown recently by Pleimling and Selke, (10) the edge magnetization of three-
dimensional Ising magnets at the surface transition has a similar non-
universal critical behavior, which, indeed, can be related to the local critical
behavior at a defect line in the two-dimensional Ising model.

The exact results on the local critical behavior of the 2d Ising model
in Eqs. (2) and (3) are in complete agreement with a stability analysis of
the fixed point of the homogeneous system in the presence of a defect
line.(11, 8) Under a small perturbation this fixed point is unstable, if the critical
exponent of the bulk correlation length, &, is &�1. Furthermore, a ladder
defect with small local couplings behaves like two weakly coupled surfaces,
and ordinary surface critical behavior will result, provided the corresponding
surface fixed point remains stable against a weak coupling between the sur-
faces.(11, 8) This stability condition can be expressed in terms of the surface
susceptibility exponent of the homogeneous model as #1, 1<0.(8) Applying
hyperscaling, one obtains for d=2, #1, 1=&&2;1 , where ;1 is the critical
exponent of the surface magnetization). As one may easily check the corre-
sponding two marginality conditions, for ladder defects,

&=1 and #1, 1=0 (4)

are both satisfied for the 2d Ising model; the marginality is manifested by
the defect coupling dependent critical exponent in Eq. (3).

In the following, we are going to utilize the above observations and
study the local critical behavior at defect lines in the dilute Ising model. We
consider strongly diluted systems, so that the bulk critical region is clearly
controlled by the random fixed point, and insert the line defects as local
perturbation. Then the relevance-irrelevance criterion for the local critical
behavior is expected to have the same form as described above, with the
exponents, & and #1, 1 , referring now to the dilute model. Determining the
local magnetization exponent ;d , at the defect, one may imagine two
scenarios: (i) ;d showing a continuous variation with the defect coupling Jd ,
or (ii) ;d staying constant in, at least, some extended range of Jd . In the
first case, there would be evidence that the marginality conditions, see
Eq. (4), remain valid for the dilute model. Otherwise, one might infer that
the critical exponents & and #1, 1 for the pure and dilute models are different.

In what follows we consider a random-bond nearest neighbor Ising
model on a square lattice where the random ferromagnetic couplings,
J1 and J2 , occur with equal probability. That model is self-dual, (12) and the
self-duality point

tanh(J1 �Tc)=exp(&2J2 �Tc) (5)
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corresponds to the critical point, if there is one phase transition in the
system. Indeed, this assumption is strongly supported by numerical calcula-
tions.(4) In this dilute model, ladder and chain defects are then introduced,
where the defect couplings Jd are uniform and ferromagnetic.

To calculate the local critical properties we did extensive Monte Carlo
(MC) simulations using Wolff 's cluster flip algorithm.(13) We have con-
sidered square lattices with L columns and L rows; Jd couples neighboring
spins in the center column for chain defects, whereas for the ladder defect
Jd connects spins between the two center columns. Typically we took
L=256, applying full periodic boundary conditions and generating about
104 clusters per realization. The results are then averaged over hundred
realizations. The statistical errors during a MC run in a given sample
turned out to be significantly smaller than those arising from the ensemble
averaging. We mention that similar parameters were used in the previous
study on the surface critical behavior of the dilute Ising model, (14) which
corresponds to the case with a ladder defect, where Jd vanishes.

In the MC simulations we calculated the average magnetization per
column, m(i)=( |� sij |)�L, where the sum runs over j=1, 2,..., L. The
defect magnetization is then given by md=m(L�2). The simulations were
performed at three values of the dilution parameter r=J1 �J2=1, 1�4
and 1�10 and for several values of the defect coupling in the region
0�Jd �J2�4.

The magnetization profile m(i) displays at the defect either a maxi-
mum or a minimum depending on the strength of the defect couplings, as
illustrated in Fig. 2 for ladder defects. Far from the defect, there is a plateau
in the profile with the height signaling the bulk magnetization, mb . The size
of the defect region, ld , where the magnetization differs substantially from
its bulk value, is related to the bulk correlation length of the system.

In the thermodynamic limit, L � �, as the critical temperature Tc , see
Eq. (5), is approached, the magnetization profile m(i) goes to zero as a
power-law m(i)tt;(i), where ;(L�2)=;d and ;(i)=; for |L�2&i |>ld ,
where ; is the usual bulk critical exponent. To estimate the values of these
critical exponents from simulational data, one may define temperature
dependent effective exponents

;(i)eff=d ln[m(i)]�d ln[t] (6)

which are approximated by using data at discrete temperatures, say,
t+2t�2 and t&2t�2. In the limit of sufficiently small 2t and t, the effective
exponents approach the true critical exponents, presuming that the system
is large enough so that finite-size effects play no role. To avoid finite-size
effects, L should be much larger than the correlation lengths in the bulk
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Fig. 2. Magnetization profiles in the dilute Ising model with a ladder defect at different
couplings Jd �J2=4.0, 0.625 and 0.01 at the dilution r=J1 �J2=1�4 and reduced critical tem-
perature t=0.06. MC systems of size 256_256 were simulated. Only the central part is shown.

and at the defect line. Actually we approached the critical point by calcu-
lating ;(i)eff for t=0.15, 0.13, 0.11, 0.09 and 0.07, with 2t=0.02, and then
did a linear extrapolation to t=0. The error caused by the extrapolation
seems to be rather small. Further technical details can be found in ref. 14.

Before presenting our findings about the defect line problem in the
dilute model, we will first consider the perfect model with random defect
couplings. The aim of this part of our investigation is to clarify, whether
random defects could lead to varying local exponents. The two random,
ferromagnetic couplings in the defect line, J and Jd , are assumed to occur
with equal probability, where J is also the coupling in the rest of the
system. Results about the local magnetization exponent ;d for various
values of the ratio Jd�J are shown in Fig. 3, both for chain and ladder
defects. The error bars in Fig. 3 take into account the sample averaging and
the extrapolation. Only a few typical error bars are shown.

For Jd�J=1, the critical exponent of the perfect model, ;=1�8, is
reproduced quite accurately. For other values of that ratio, one observes a
non-universal critical behavior with ;d varying continuously with Jd�J, in
accordance with the above marginality conditions. It may be interesting to
note the touching of the curves for the ladder and the chain defects at
Jd=J.
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Fig. 3. Local magnetization exponent, ;d , of the pure Ising model with randomly dis-
tributed couplings in the chain and ladder type defects, see text. The lines are guides to the
eye.

In Fig. 4, results about the critical exponent of the local magnetization
;d for the dilute model, with random couplings J1 and J2 , and the defect
line, with uniform coupling Jd , are depicted. In the case r=J1 �J2=1, our
data are in good agreement with the exact results, see Eqs. (2) and (3) for
chain and ladder defects. In the dilute case, J1{J2 , ;d is seen to vary con-
tinuously with the strength of the defect coupling Jd . For a fixed value of Jd ,
the defect energy-density increases, relative to the average bulk value, for
decreasing value of r=J1 �J2 . Therefore, generally, there is an increasing
local order at the defect, which is connected to a decreasing value of the
defect exponent, ;d . This argument, however, seems to be not valid for the
ladder defect with Jd>>J2 . In this limit one has effectively a chain defect
with random couplings J1+J2 , with probability 1�2, as well as 2J1 and 2J2 ,
each with probability 1�4. Then, shown in Fig. 4, ;d (Jd) is increasing with
increasing dilution.- For Jd=0, one recovers(14, 15) the surface critical expo-
nent ;d=;1=1�2.

Another limiting situation is obtained for a chain defect with zero
defect bond, Jd=0. Then the problem is equivalent to a ladder defect with
three random couplings, which depend on J1 and J2 . As seen in the inset
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Fig. 4. Local magnetization exponent, ;d , of the random Ising model at different dilutions
(r=J1 �J2=1 diamond, r=1�4 square, r=1�10 circle) for ladder defects. Findings on the
chain defect are shown in the inset. The exact results for the pure system with r=1 are
denoted by full line; the broken and dotted lines are guides to the eye.

of Fig. 4, such random couplings could also lead to a non-universal
behavior. This observation is in agreement with our findings on the perfect
model in Fig. 3.

To summarize, we considered uniform ladder and chain defects in two-
dimensional dilute Ising models and determined the critical exponent of the
defect magnetization. The exponent was found to be a continuous function
of the defect coupling. Assuming that the first stability criterion mentioned
above holds for the dilute case as well, one gets for the critical exponent &
of the bulk random Ising model the borderline value &=1. Accordingly,
one could rule out &>1, as had been suggested before(7) in the context of
dilution dependent bulk critical exponents.

In conclusion, we suggest that the non-universal critical behavior is
related to the borderline values of the critical exponents of the bulk dilute
model, as given in Eq. (4). Consequently, one obtains &=1 and #1, 1=0
(implying ;1=1�2, in agreement with ref. 14), both for the perfect and
dilute two dimensional Ising models.
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